Mechanical Power in Pressure-Controlled Ventilation: A Simple and Reliable Bedside Method

Summary of Mechanical Power in Pressure-Controlled Ventilation: A Simple and Reliable Bedside Method Snoep JWM, Rietveld PJ, van der Velde-Quist F, de Jonge E, Schoe A. Crit Care Explor. 2025.


Abstract

This study presents a newly proposed equation for calculating mechanical power (MP) in pressure-controlled ventilation (PCV) that is both simple and accurate for bedside use. The authors compared their method—using plateau pressure (Pplat)—against the gold standard geometric method and other existing equations, including those by van der Meijden, Becher, and Trinkle. The new equation showed minimal bias and good agreement with the reference method, making it suitable for routine clinical practice, especially in ICUs lacking advanced analytics or monitoring software.


Key Points:

  1. Importance of Mechanical Power MP quantifies the energy delivered to the lungs per minute and integrates variables such as tidal volume (VT), driving pressure, flow, respiratory rate, and PEEP—all contributors to ventilator-induced lung injury (VILI).

  2. Limitations of Existing Methods Many MP calculation methods are either complex (e.g., Becher’s comprehensive formula) or inaccurate at the bedside, especially when accounting for pressure rise time and nonlinear pressure-volume (PV) loop behavior in PCV.

  3. The New Proposed Equation The new equation is: MP = 0.098 × RR × VT × Pplat, using respiratory rate (RR), tidal volume (VT in liters), and plateau pressure (Pplat in cm H₂O). This formula simplifies bedside calculation while retaining good accuracy.

  4. Comparison with Other Equations The new method showed the lowest bias (0.2 J/min) and tight limits of agreement (–3.1 to +3.4 J/min) compared to more complex alternatives, which had wider biases and overestimated MP.

  5. Study Population and Setting The study included 56 measurements from 42 patients (mostly with COVID-19) in a single ICU in the Netherlands, all sedated and without spontaneous breathing activity, ensuring controlled measurement conditions.

  6. Reference Method: Geometric Analysis The gold standard used numerical integration of the area under the dynamic PV loop (geometric method) to determine true MP, against which all equations were compared.

  7. Rise Time and PV Loop Shape Consideration Becher’s simplified model overestimates MP by ignoring pressure rise time. The authors’ equation corrects this by using Pplat instead of peak pressure, indirectly adjusting for nonlinearity in the inspiratory limb.

  8. Applicability and Limits The equation is valid for patients in PCV mode, not for those on volume-controlled ventilation (VCV) or with spontaneous breathing efforts. Errors increased slightly with very high airway resistance.

  9. Clinical Usability Given its simplicity and minimal equipment requirement (just a ventilator capable of inspiratory hold), this method is feasible in most ICU settings lacking integrated computational tools.

  10. Future Research Needs The authors call for validation in broader ICU populations beyond COVID-19, exploration of precise MP thresholds linked to VILI or mortality, and testing in ventilators with variable rise times.

Minimize image
Edit image
Delete image

Graphic representation of the dynamic pressure-volume loop during pressure-controlled ventilation. A, A dynamic pressure-volume (PV) loop showing the three components of mechanical power (MP) in pressure-controlled ventilation. In this case, peak airway pressure (Ppeak) is 12 cm H2O and plateau pressure (Pplat) is 11 cm H2O. The red dotted line is indicative, not exact. B, The blue and yellow zones represent the real PV loop, which is the MP of a single breath. The blue and orange zones are the MP as calculated with our new equation, using Pplat instead of Ppeak (an equal pressure line is at Pplat). The yellow zone is subtracted from the real PV loop, while adding the orange zone. Simplified equation MP = 0.098 · RR · Vt · Pplat. Paw = airway pressure, PEEP = positive end-expiratory pressure, RR = respiratory rate, Vt = tidal volume.

Conclusion

This study introduces a practical, accurate, and easy-to-use equation for calculating mechanical power in pressure-controlled ventilation. By incorporating plateau pressure, the method approximates gold-standard measurements and offers a feasible bedside alternative for improving ventilator management and reducing lung injury.

Minimize image
Edit image
Delete image

Bland-Altman plots showing the differences between mechanical power (MP) measured and MP calculated using the equations for estimating MP in pressure-controlled ventilation. For Bland-Altman plot of the comprehensive Becher equation, see e-supplement (  http://links.lww.com/CCX/B477). MPPplat = mechanical power calculated using plateau pressure.

ACCEESS FULL ARTICLE HERE

Minimize image
Edit image
Delete image

Mechanical Power in Pressure-Controlled Ventilation: A Simple and Reliable Bedside Method

Listen to the following podcast on “New Equation to estimate Mechanical Power during mechanical ventilation. mM Equation” by Society of Mechanical Ventilation


Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Scroll to Top