Abstract
The use of minimized extracorporeal circulation (MiECC) during cardiac surgery is associated with a reduced inflammatory reaction compared to conventional cardiopulmonary bypass (cCPB). Since it is unknown if MiECC also reduces the amount of free-circulating mitochondrial DNA (mtDNA), this study aims to compare MiECC-induced mtDNA release to that of cCPB as well as to identify potential relations between the plasma levels of mtDNA and an adverse outcome. Overall, 45 patients undergoing cardiac surgery with either cCPB or MiECC were included in the study. MtDNA encoding for NADH dehydrogenase 1 was quantified with quantitative polymerase chain reaction. The plasma amount of mtDNA was significantly lower in patients undergoing cardiac surgery with MiECC compared to cCPB (MiECC: 161.8 (65.5–501.9); cCPB 190.8 (82–705.7); p < 0.001). Plasma levels of mtDNA showed comparable kinetics independently of the study group and peaked during CPB (MiECC preoperative: 68.2 (26.5–104.9); MiECC 60 min after start of CPB: 536.5 (215.7–919.6); cCPB preoperative: 152.5 (80.9–207.6); cCPB 60 min after start of CPB: 1818.0 (844.2–3932.2); all p < 0.001). Patients offering an mtDNA blood concentration of >650 copies/µL after the commencement of CPB had a 5-fold higher risk for postoperative atrial fibrillation independently of the type of cardiopulmonary bypass. An amount of mtDNA being higher than 650 copies/µL showed moderate predictive power (AUROC 0.71 (0.53–071)) for the identification of postoperative atrial fibrillation. In conclusion, plasma levels of mtDNA were lower in patients undergoing cardiac surgery with MiECC compared to cCPB. The amount of mtDNA at the beginning of the CPB was associated with postoperative atrial fibrillation independent of the type of cardiopulmonary bypass.